@@ -669,12 +669,14 @@ impl MonitorsAPI {
669669 ///
670670 /// ##### Error Tracking Alert Query
671671 ///
672- /// Example(RUM) : `error-tracking-rum (query).rollup(rollup_method[, measure]).last(time_window) operator #`
673- /// Example(APM Traces) : `error-tracking-traces (query).rollup(rollup_method[, measure]).last(time_window) operator #`
672+ /// "New issue" example : `error-tracking(query).source(issue_source).new(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
673+ /// "High impact issue" example : `error-tracking(query).source(issue_source).impact(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
674674 ///
675675 /// - `query` The search query - following the [Log search syntax](<https://docs.datadoghq.com/logs/search_syntax/>).
676- /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality`.
676+ /// - `issue_source` The issue source - supports `all`, `browser`, `mobile` and `backend` and defaults to `all` if omitted.
677+ /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality` and defaults to `count` if omitted.
677678 /// - `measure` For `avg` and cardinality `rollup_method` - specify the measure or the facet name you want to use.
679+ /// - `group by` Comma-separated list of attributes to group by - should contain at least `issue.id`.
678680 /// - `time_window` #m (between 1 and 2880), #h (between 1 and 48).
679681 /// - `operator` `<`, `<=`, `>`, `>=`, `==`, or `!=`.
680682 /// - `#` an integer or decimal number used to set the threshold.
@@ -879,12 +881,14 @@ impl MonitorsAPI {
879881 ///
880882 /// ##### Error Tracking Alert Query
881883 ///
882- /// Example(RUM) : `error-tracking-rum (query).rollup(rollup_method[, measure]).last(time_window) operator #`
883- /// Example(APM Traces) : `error-tracking-traces (query).rollup(rollup_method[, measure]).last(time_window) operator #`
884+ /// "New issue" example : `error-tracking(query).source(issue_source).new(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
885+ /// "High impact issue" example : `error-tracking(query).source(issue_source).impact(). rollup(rollup_method[, measure]).by(group_by ).last(time_window) operator #`
884886 ///
885887 /// - `query` The search query - following the [Log search syntax](<https://docs.datadoghq.com/logs/search_syntax/>).
886- /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality`.
888+ /// - `issue_source` The issue source - supports `all`, `browser`, `mobile` and `backend` and defaults to `all` if omitted.
889+ /// - `rollup_method` The stats roll-up method - supports `count`, `avg`, and `cardinality` and defaults to `count` if omitted.
887890 /// - `measure` For `avg` and cardinality `rollup_method` - specify the measure or the facet name you want to use.
891+ /// - `group by` Comma-separated list of attributes to group by - should contain at least `issue.id`.
888892 /// - `time_window` #m (between 1 and 2880), #h (between 1 and 48).
889893 /// - `operator` `<`, `<=`, `>`, `>=`, `==`, or `!=`.
890894 /// - `#` an integer or decimal number used to set the threshold.
0 commit comments