You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
tpu_cores(int): How many TPU cores to train on (1 or 8) / Single TPU to train on [1]. Defaults to None
195
+
183
196
gradient_clip_val (float): Gradient clipping value
184
197
185
198
overfit_batches (float): Uses this much data of the training set. If nonzero, will use the same training set
@@ -219,17 +232,20 @@ class TrainerConfig:
219
232
default=64, metadata={"help": "Number of samples in each batch of training"}
220
233
)
221
234
fast_dev_run: bool=field(
222
-
default=False, metadata={"help": "Quick Debug Run of Val"}
235
+
default=False, metadata={"help": "runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test to find any bugs (ie: a sort of unit test)."}
223
236
)
224
237
max_epochs: int=field(
225
238
default=10, metadata={"help": "Maximum number of epochs to be run"}
226
239
)
227
-
min_epochs: int=field(
228
-
default=1, metadata={"help": "Minimum number of epochs to be run"}
240
+
min_epochs: Optional[int] =field(
241
+
default=1, metadata={"help": "Force training for at least these many epochs. 1 by default"}
242
+
)
243
+
max_time: Optional[int] =field(
244
+
default=None, metadata={"help": "Stop training after this amount of time has passed. Disabled by default (None)"}
229
245
)
230
-
gpus: Optional[int] =field(
246
+
gpus: Union[int, list] =field(
231
247
default=None,
232
-
metadata={"help": "The index of the GPU to be used. If None, will use CPU"},
248
+
metadata={"help": "Number of gpus to train on (int) or which GPUs to train on (list or str). -1 uses all available GPUs. By default uses CPU (None)"},
233
249
)
234
250
accumulate_grad_batches: int=field(
235
251
default=1,
@@ -243,6 +259,12 @@ class TrainerConfig:
243
259
"help": "Runs a learning rate finder algorithm (see this paper) when calling trainer.tune(), to find optimal initial learning rate."
244
260
},
245
261
)
262
+
auto_select_gpus: bool=field(
263
+
default=True,
264
+
metadata={
265
+
"help": "If enabled and `gpus` is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in 'exclusive mode', such that only one process at a time can access them."
266
+
},
267
+
)
246
268
check_val_every_n_epoch: int=field(
247
269
default=1, metadata={"help": "Check val every n train epochs."}
248
270
)
@@ -255,6 +277,25 @@ class TrainerConfig:
255
277
"help": "Uses this much data of the training set. If nonzero, will use the same training set for validation and testing. If the training dataloaders have shuffle=True, Lightning will automatically disable it. Useful for quickly debugging or trying to overfit on purpose."
256
278
},
257
279
)
280
+
deterministic: bool=field(
281
+
default=False,
282
+
metadata={
283
+
"help": "If true enables cudnn.deterministic. Might make your system slower, but ensures reproducibility."
284
+
},
285
+
)
286
+
accelerator: Optional[str] =field(
287
+
default=None,
288
+
metadata={
289
+
"help": "The accelerator backend to use. Defaults to None. Check this link for detailed documentation about the functionality. https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#accelerator",
"help": "How many TPU cores to train on (1 or 8) / Single TPU to train on [1]. Defaults to None",
297
+
},
298
+
)
258
299
profiler: Optional[str] =field(
259
300
default=None,
260
301
metadata={
@@ -530,7 +571,7 @@ class ModelConfig:
530
571
metrics: Optional[List[str]] =field(
531
572
default=None,
532
573
metadata={
533
-
"help": "the list of metrics you need to track during training. The metrics should be one of the functional metrics implemented in PyTorch Lightning. By default, it is accuracy if classification and MeanSquaredLogError for regression"
574
+
"help": "the list of metrics you need to track during training. The metrics should be one of the functional metrics implemented in ``torchmetrics``. By default, it is accuracy if classification and mean_squared_error for regression"
0 commit comments