Skip to content

Commit fb13129

Browse files
committed
-- added citations to readme and docs
-- added more blogs to readme
1 parent 0a2a9ad commit fb13129

File tree

2 files changed

+58
-9
lines changed

2 files changed

+58
-9
lines changed

README.md

Lines changed: 32 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@
44
[![travis](https://img.shields.io/travis/manujosephv/pytorch_tabular.svg)](https://travis-ci.com/manujosephv/pytorch_tabular)
55
[![documentation status](https://readthedocs.org/projects/pytorch_tabular/badge/?version=latest)](https://pytorch_tabular.readthedocs.io/en/latest/?badge=latest)
66
![PyPI - Downloads](https://img.shields.io/pypi/dm/pytorch_tabular)
7+
[![DOI](https://zenodo.org/badge/321584367.svg)](https://zenodo.org/badge/latestdoi/321584367)
78
[![contributions welcome](https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat-square)](https://github.com/manujosephv/pytorch_tabular/issues)
89
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/manujosephv/pytorch_tabular/blob/main/docs/tutorials/01-Basic_Usage.ipynb.py)
910

@@ -20,8 +21,9 @@ It has been built on the shoulders of giants like **PyTorch**(obviously), and **
2021
- [Documentation](#documentation)
2122
- [Available Models](#available-models)
2223
- [Usage](#usage)
23-
- [Blog](#blog)
24-
- [References and Citations](#references-and-citations)
24+
- [Blogs](#blogs)
25+
- [Paper] (#paper)
26+
- [Citation](#citation)
2527

2628

2729
## Installation
@@ -109,9 +111,11 @@ pred_df = tabular_model.predict(test)
109111
tabular_model.save_model("examples/basic")
110112
loaded_model = TabularModel.load_from_checkpoint("examples/basic")
111113
```
112-
## Blog
114+
## Blogs
113115

114116
[PyTorch Tabular – A Framework for Deep Learning for Tabular Data](https://deep-and-shallow.com/2021/01/27/pytorch-tabular-a-framework-for-deep-learning-for-tabular-data/)
117+
[Neural Oblivious Decision Ensembles(NODE) – A State-of-the-Art Deep Learning Algorithm for Tabular Data](https://deep-and-shallow.com/2021/02/25/neural-oblivious-decision-ensemblesnode-a-state-of-the-art-deep-learning-algorithm-for-tabular-data/)
118+
[Mixture Density Networks: Probabilistic Regression for Uncertainty Estimation](https://deep-and-shallow.com/2021/03/20/mixture-density-networks-probabilistic-regression-for-uncertainty-estimation/)
115119

116120
## Future Roadmap(Contributions are Welcome)
117121

@@ -123,8 +127,30 @@ loaded_model = TabularModel.load_from_checkpoint("examples/basic")
123127
6. Add Text and Image Modalities for mixed modal problems
124128
7. Integrate Wide and Deep model
125129
8. Integrate TabTransformer
126-
## References and Citations
130+
## Citation
131+
If you use PyTorch Tabular for a scientific publication, we would appreciate citations to the published software and the following paper:
127132

128-
[1] Sergei Popov, Stanislav Morozov, Artem Babenko. [*"Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data"*](https://arxiv.org/abs/1909.06312). arXiv:1909.06312 [cs.LG] (2019)
129133

130-
[2] Sercan O. Arik, Tomas Pfister;. [*"TabNet: Attentive Interpretable Tabular Learning"*](https://arxiv.org/abs/1908.07442). arXiv:1908.07442 (2019).
134+
* [arxiv Paper](https://arxiv.org/abs/2104.13638)
135+
```
136+
@misc{joseph2021pytorch,
137+
title={PyTorch Tabular: A Framework for Deep Learning with Tabular Data},
138+
author={Manu Joseph},
139+
year={2021},
140+
eprint={2104.13638},
141+
archivePrefix={arXiv},
142+
primaryClass={cs.LG}
143+
}
144+
```
145+
* Zenodo Software Citation
146+
```
147+
@article{manujosephv_2021,
148+
title={manujosephv/pytorch_tabular: v0.5.0-alpha},
149+
DOI={10.5281/zenodo.4732773},
150+
abstractNote={<p>First Alpha Release</p>},
151+
publisher={Zenodo},
152+
author={manujosephv},
153+
year={2021},
154+
month={May}
155+
}
156+
```

docs/index.md

Lines changed: 26 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -86,8 +86,31 @@ pred_df = tabular_model.predict(test)
8686
tabular_model.save_model("examples/basic")
8787
loaded_model = TabularModel.load_from_checkpoint("examples/basic")
8888
```
89-
## References and Citations
89+
## Citation
9090

91-
[1] Sergei Popov, Stanislav Morozov, Artem Babenko. [*"Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data"*](https://arxiv.org/abs/1909.06312). arXiv:1909.06312 [cs.LG] (2019)
91+
If you use PyTorch Tabular for a scientific publication, we would appreciate citations to the published software and the following paper:
9292

93-
[2] Sercan O. Arik, Tomas Pfister;. [*"TabNet: Attentive Interpretable Tabular Learning"*](https://arxiv.org/abs/1908.07442). arXiv:1908.07442 (2019).
93+
94+
* [arxiv Paper](https://arxiv.org/abs/2104.13638)
95+
```
96+
@misc{joseph2021pytorch,
97+
title={PyTorch Tabular: A Framework for Deep Learning with Tabular Data},
98+
author={Manu Joseph},
99+
year={2021},
100+
eprint={2104.13638},
101+
archivePrefix={arXiv},
102+
primaryClass={cs.LG}
103+
}
104+
```
105+
* Zenodo Software Citation
106+
```
107+
@article{manujosephv_2021,
108+
title={manujosephv/pytorch_tabular: v0.5.0-alpha},
109+
DOI={10.5281/zenodo.4732773},
110+
abstractNote={<p>First Alpha Release</p>},
111+
publisher={Zenodo},
112+
author={manujosephv},
113+
year={2021},
114+
month={May}
115+
}
116+
```

0 commit comments

Comments
 (0)