diff --git a/requirements.txt b/requirements.txt index 502d7d1a0d19..151bd8f69a39 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,9 @@ altair pandas streamlit +transformers +torch +GoogleBard +langchain +ProGPT +edge-tts \ No newline at end of file diff --git a/streamlit_app.py b/streamlit_app.py index 7a0ed1272052..de0ac2066739 100644 --- a/streamlit_app.py +++ b/streamlit_app.py @@ -1,40 +1,13 @@ -import altair as alt -import numpy as np -import pandas as pd import streamlit as st +from transformers import pipeline -""" -# Welcome to Streamlit! +# Load the text-to-speech pipeline +tts_pipeline = pipeline("text-to-speech") -Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:. -If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community -forums](https://discuss.streamlit.io). +# Text input field +text_input = st.text_input("Enter text to be spoken:") -In the meantime, below is an example of what you can do with just a few lines of code: -""" - -num_points = st.slider("Number of points in spiral", 1, 10000, 1100) -num_turns = st.slider("Number of turns in spiral", 1, 300, 31) - -indices = np.linspace(0, 1, num_points) -theta = 2 * np.pi * num_turns * indices -radius = indices - -x = radius * np.cos(theta) -y = radius * np.sin(theta) - -df = pd.DataFrame({ - "x": x, - "y": y, - "idx": indices, - "rand": np.random.randn(num_points), -}) - -st.altair_chart(alt.Chart(df, height=700, width=700) - .mark_point(filled=True) - .encode( - x=alt.X("x", axis=None), - y=alt.Y("y", axis=None), - color=alt.Color("idx", legend=None, scale=alt.Scale()), - size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])), - )) +# Generate audio and play it +if text_input: + audio = tts_pipeline(text_input) + st.audio(audio)