@@ -160,10 +160,9 @@ test_that('classification probabilities', {
160160 y = tr_dat $ Class
161161 )
162162
163- keras_pred <-
164- keras :: predict_proba(lr_fit $ fit , as.matrix(te_dat [, - 1 ])) %> %
165- as_tibble() %> %
166- setNames(paste0(" .pred_" , lr_fit $ lvl ))
163+ keras_pred <- keras :: predict_proba(lr_fit $ fit , as.matrix(te_dat [, - 1 ]))
164+ colnames(keras_pred ) <- paste0(" .pred_" , lr_fit $ lvl )
165+ keras_pred <- as_tibble(keras_pred )
167166
168167 parsnip_pred <- predict(lr_fit , te_dat [, - 1 ], type = " prob" )
169168 expect_equal(as.data.frame(keras_pred ), as.data.frame(parsnip_pred ))
@@ -177,10 +176,10 @@ test_that('classification probabilities', {
177176 y = tr_dat $ Class
178177 )
179178
180- keras_pred <-
181- keras :: predict_proba( plrfit $ fit , as.matrix( te_dat [, - 1 ])) % > %
182- as_tibble() % > %
183- setNames(paste0( " .pred_ " , lr_fit $ lvl ))
179+ keras_pred <- keras :: predict_proba( plrfit $ fit , as.matrix( te_dat [, - 1 ]))
180+ colnames( keras_pred ) <- paste0( " .pred_ " , lr_fit $ lvl )
181+ keras_pred <- as_tibble(keras_pred )
182+
184183 parsnip_pred <- predict(plrfit , te_dat [, - 1 ], type = " prob" )
185184 expect_equal(as.data.frame(keras_pred ), as.data.frame(parsnip_pred ))
186185
0 commit comments