Skip to content

Async web scraping framework on top of Rust. Works with Free-threaded Python (`PYTHON_GIL=0`).

License

Notifications You must be signed in to change notification settings

BitingSnakes/silkworm

Repository files navigation

silkworm-rs

PyPI - Version Tests Gemini GEM

Async-first web scraping framework built on rnet (HTTP with browser impersonation) and scraper-rs (fast HTML parsing). Silkworm gives you a minimal Spider/Request/Response model, middlewares, and pipelines so you can script quick scrapes or build larger crawlers without boilerplate.

Features

  • Async engine with configurable concurrency, bounded queue backpressure (defaults to concurrency * 10), and per-request timeouts.
  • rnet-powered HTTP client: browser impersonation, redirect following with loop detection, query merging, and proxy support via request.meta["proxy"].
  • Typed spiders and callbacks that can return items or Request objects; HTMLResponse ships helper methods plus Response.follow to reuse callbacks.
  • Middlewares: User-Agent rotation/default, proxy rotation, retry with exponential backoff + optional sleep codes, flexible delays (fixed/random/custom), and SkipNonHTMLMiddleware to drop non-HTML callbacks.
  • Pipelines: JSON Lines, SQLite, XML (nested data preserved), and CSV (flattens dicts and lists) out of the box.
  • Structured logging via logly (SILKWORM_LOG_LEVEL=DEBUG), plus periodic/final crawl statistics (requests/sec, queue size, memory, seen URLs).

Installation

From PyPI with pip:

pip install silkworm-rs

From PyPI with uv (recommended for faster installs):

uv pip install --prerelease=allow silkworm-rs
# or if using uv's project management:
uv add --prerelease=allow silkworm-rs

Note: The --prerelease=allow flag is required because silkworm-rs depends on prerelease versions of some packages (e.g., rnet).

From source:

uv venv  # install uv from https://docs.astral.sh/uv/getting-started/ if needed
source .venv/bin/activate  # Windows: .venv\Scripts\activate
uv pip install --prerelease=allow -e .

Targets Python 3.13+; dependencies are pinned in pyproject.toml.

Quick start

Define a spider by subclassing Spider, implementing parse, and yielding items or follow-up Request objects. This example writes quotes to data/quotes.jl and enables basic user agent, retry, and non-HTML filtering middlewares.

from silkworm import HTMLResponse, Response, Spider, run_spider
from silkworm.middlewares import (
    RetryMiddleware,
    SkipNonHTMLMiddleware,
    UserAgentMiddleware,
)
from silkworm.pipelines import JsonLinesPipeline


class QuotesSpider(Spider):
    name = "quotes"
    start_urls = ("https://quotes.toscrape.com/",)

    async def parse(self, response: Response):
        if not isinstance(response, HTMLResponse):
            return

        html = response
        for quote in await html.select(".quote"):
            text_el = await quote.select_first(".text")
            author_el = await quote.select_first(".author")
            if text_el is None or author_el is None:
                continue
            tags = await quote.select(".tag")
            yield {
                "text": text_el.text,
                "author": author_el.text,
                "tags": [t.text for t in tags],
            }

        if next_link := await html.select_first("li.next > a"):
            yield html.follow(next_link.attr("href"), callback=self.parse)


if __name__ == "__main__":
    run_spider(
        QuotesSpider,
        request_middlewares=[UserAgentMiddleware()],
        response_middlewares=[
            SkipNonHTMLMiddleware(),
            RetryMiddleware(max_times=3, sleep_http_codes=[429, 503]),
        ],
        item_pipelines=[JsonLinesPipeline("data/quotes.jl")],
        concurrency=16,
        request_timeout=10,
        log_stats_interval=30,
    )

run_spider/crawl knobs:

  • concurrency: number of concurrent HTTP requests; default 16.
  • max_pending_requests: queue bound to avoid unbounded memory use (defaults to concurrency * 10).
  • request_timeout: per-request timeout (seconds).
  • keep_alive: reuse HTTP connections when supported by the underlying client (sends Connection: keep-alive).
  • html_max_size_bytes: limit HTML parsed into Document to avoid huge payloads.
  • log_stats_interval: seconds between periodic stats logs; final stats are always emitted.
  • request_middlewares / response_middlewares / item_pipelines: plug-ins run on every request/response/item.
  • use run_spider_uvloop(...) instead of run_spider(...) to run under uvloop (requires pip install silkworm-rs[uvloop]).
  • use run_spider_winloop(...) instead of run_spider(...) to run under winloop on Windows (requires pip install silkworm-rs[winloop]).

Built-in middlewares and pipelines

from silkworm.middlewares import (
    DelayMiddleware,
    ProxyMiddleware,
    RetryMiddleware,
    SkipNonHTMLMiddleware,
    UserAgentMiddleware,
)
from silkworm.pipelines import (
    CallbackPipeline,  # invoke a custom callback function on each item
    CSVPipeline,
    JsonLinesPipeline,
    MsgPackPipeline,  # requires: pip install silkworm-rs[msgpack]
    SQLitePipeline,
    XMLPipeline,
    TaskiqPipeline,  # requires: pip install silkworm-rs[taskiq]
    PolarsPipeline,  # requires: pip install silkworm-rs[polars]
    ExcelPipeline,  # requires: pip install silkworm-rs[excel]
    YAMLPipeline,  # requires: pip install silkworm-rs[yaml]
    AvroPipeline,  # requires: pip install silkworm-rs[avro]
    ElasticsearchPipeline,  # requires: pip install silkworm-rs[elasticsearch]
    MongoDBPipeline,  # requires: pip install silkworm-rs[mongodb]
    MySQLPipeline,  # requires: pip install silkworm-rs[mysql]
    PostgreSQLPipeline,  # requires: pip install silkworm-rs[postgresql]
    S3JsonLinesPipeline,  # requires: pip install silkworm-rs[s3]
    VortexPipeline,  # requires: pip install silkworm-rs[vortex]
    WebhookPipeline,  # sends items to webhook endpoints using rnet
    GoogleSheetsPipeline,  # requires: pip install silkworm-rs[gsheets]
    SnowflakePipeline,  # requires: pip install silkworm-rs[snowflake]
    FTPPipeline,  # requires: pip install silkworm-rs[ftp]
    SFTPPipeline,  # requires: pip install silkworm-rs[sftp]
    CassandraPipeline,  # requires: pip install silkworm-rs[cassandra]
    CouchDBPipeline,  # requires: pip install silkworm-rs[couchdb]
    DynamoDBPipeline,  # requires: pip install silkworm-rs[dynamodb]
    DuckDBPipeline,  # requires: pip install silkworm-rs[duckdb]
)

run_spider(
    QuotesSpider,
    request_middlewares=[
        UserAgentMiddleware(),  # rotate/custom user agent
        DelayMiddleware(min_delay=0.3, max_delay=1.2),  # polite throttling
        # ProxyMiddleware with round-robin selection (default)
        # ProxyMiddleware(proxies=["http://user:pass@proxy1:8080", "http://proxy2:8080"]),
        # ProxyMiddleware with random selection
        # ProxyMiddleware(proxies=["http://proxy1:8080", "http://proxy2:8080"], random_selection=True),
        # ProxyMiddleware from file with random selection
        # ProxyMiddleware(proxy_file="proxies.txt", random_selection=True),
    ],
    response_middlewares=[
        RetryMiddleware(max_times=3, sleep_http_codes=[403, 429]),  # backoff + retry
        SkipNonHTMLMiddleware(),  # drop callbacks for images/APIs/etc
    ],
    item_pipelines=[
        JsonLinesPipeline("data/quotes.jl"),
        SQLitePipeline("data/quotes.db", table="quotes"),
        XMLPipeline("data/quotes.xml", root_element="quotes", item_element="quote"),
        CSVPipeline("data/quotes.csv", fieldnames=["author", "text", "tags"]),
        MsgPackPipeline("data/quotes.msgpack"),
    ],
)
  • DelayMiddleware strategies: delay=1.0 (fixed), min_delay/max_delay (random), or delay_func (custom).
  • ProxyMiddleware supports three modes:
    • Round-robin (default): ProxyMiddleware(proxies=["http://proxy1:8080", "http://proxy2:8080"]) cycles through proxies in order.
    • Random selection: ProxyMiddleware(proxies=["http://proxy1:8080", "http://proxy2:8080"], random_selection=True) randomly selects a proxy for each request.
    • From file: ProxyMiddleware(proxy_file="proxies.txt") loads proxies from a file (one proxy per line, blank lines ignored). Combine with random_selection=True for random selection from the file.
  • RetryMiddleware backs off with asyncio.sleep; any status in sleep_http_codes is retried even if not in retry_http_codes.
  • SkipNonHTMLMiddleware checks Content-Type and optionally sniffs the body (sniff_bytes) to avoid running HTML callbacks on binary/API responses.
  • JsonLinesPipeline writes items to a local JSON Lines file and, when opendal is installed, appends asynchronously via the filesystem backend (use_opendal=False to stick to a regular file handle).
  • CSVPipeline flattens nested dicts (e.g., {"user": {"name": "Alice"}} -> user_name) and joins lists with commas; XMLPipeline preserves nesting.
  • MsgPackPipeline writes items in binary MessagePack format using ormsgpack for fast and compact serialization (requires pip install silkworm-rs[msgpack]).
  • TaskiqPipeline sends items to a Taskiq queue for distributed processing (requires pip install silkworm-rs[taskiq]).
  • PolarsPipeline writes items to a Parquet file using Polars for efficient columnar storage (requires pip install silkworm-rs[polars]).
  • ExcelPipeline writes items to an Excel .xlsx file (requires pip install silkworm-rs[excel]).
  • YAMLPipeline writes items to a YAML file (requires pip install silkworm-rs[yaml]).
  • AvroPipeline writes items to an Avro file with optional schema (requires pip install silkworm-rs[avro]).
  • ElasticsearchPipeline sends items to an Elasticsearch index (requires pip install silkworm-rs[elasticsearch]).
  • MongoDBPipeline sends items to a MongoDB collection (requires pip install silkworm-rs[mongodb]).
  • MySQLPipeline sends items to a MySQL database table as JSON (requires pip install silkworm-rs[mysql]).
  • PostgreSQLPipeline sends items to a PostgreSQL database table as JSONB (requires pip install silkworm-rs[postgresql]).
  • S3JsonLinesPipeline writes items to AWS S3 in JSON Lines format using async OpenDAL (requires pip install silkworm-rs[s3]).
  • VortexPipeline writes items to a Vortex file for high-performance columnar storage with 100x faster random access and 10-20x faster scans compared to Parquet (requires pip install silkworm-rs[vortex]).
  • WebhookPipeline sends items to webhook endpoints via HTTP POST/PUT using rnet (same HTTP client as the spider) with support for batching and custom headers.
  • GoogleSheetsPipeline appends items to Google Sheets with automatic flattening of nested data structures (requires pip install silkworm-rs[gsheets] and service account credentials).
  • SnowflakePipeline sends items to Snowflake data warehouse tables as JSON (requires pip install silkworm-rs[snowflake]).
  • FTPPipeline writes items to an FTP server in JSON Lines format (requires pip install silkworm-rs[ftp]).
  • SFTPPipeline writes items to an SFTP server in JSON Lines format with support for password or key-based authentication (requires pip install silkworm-rs[sftp]).
  • CassandraPipeline sends items to Apache Cassandra database tables (requires pip install silkworm-rs[cassandra]).
  • CouchDBPipeline sends items to CouchDB databases as documents (requires pip install silkworm-rs[couchdb]).
  • DynamoDBPipeline sends items to AWS DynamoDB tables with automatic table creation (requires pip install silkworm-rs[dynamodb]).
  • DuckDBPipeline sends items to a DuckDB database table as JSON (requires pip install silkworm-rs[duckdb]).
  • CallbackPipeline invokes a custom callback function (sync or async) on each item, enabling inline processing logic without creating a full pipeline class. See example below.

Using CallbackPipeline for custom processing

Process items with custom callback functions without creating a full pipeline class:

from silkworm.pipelines import CallbackPipeline

# Sync callback
def print_item(item, spider):
    print(f"[{spider.name}] {item}")
    return item

# Async callback
async def validate_item(item, spider):
    # Could do async operations like database checks
    if len(item.get("text", "")) < 10:
        print(f"Warning: Short text in item")
    return item

# Modifying callback
def enrich_item(item, spider):
    item["spider_name"] = spider.name
    item["processed"] = True
    return item

run_spider(
    QuotesSpider,
    item_pipelines=[
        CallbackPipeline(callback=print_item),
        CallbackPipeline(callback=validate_item),
        CallbackPipeline(callback=enrich_item),
    ],
)

Callbacks receive (item, spider) and should return the processed item (or None to return the original item unchanged).

Streaming items to a queue with TaskiqPipeline

Stream scraped items to a Taskiq queue for distributed processing:

from taskiq import InMemoryBroker
from silkworm.pipelines import TaskiqPipeline

broker = InMemoryBroker()

@broker.task
async def process_item(item):
    # Your item processing logic here
    print(f"Processing: {item}")
    # Save to database, send to another service, etc.

pipeline = TaskiqPipeline(broker, task=process_item)
run_spider(MySpider, item_pipelines=[pipeline])

This enables distributed processing, retries, rate limiting, and other Taskiq features. See examples/taskiq_quotes_spider.py for a complete example.

Handling non-HTML responses

Keep crawls cheap when URLs mix HTML and binaries/APIs:

response_middlewares=[SkipNonHTMLMiddleware(sniff_bytes=1024)]
# Tighten HTML parsing size (bytes) to avoid loading huge bodies into scraper-rs
run_spider(MySpider, html_max_size_bytes=1_000_000)

Performance optimization with uvloop

For improved async performance, enable uvloop (a fast, drop-in replacement for asyncio's event loop):

pip install silkworm-rs[uvloop]
# or with uv:
uv pip install --prerelease=allow silkworm-rs[uvloop]

Then call run_spider_uvloop (same signature as run_spider):

from silkworm import run_spider_uvloop

run_spider_uvloop(
    QuotesSpider,
    concurrency=32,
)

uvloop can provide 2-4x performance improvement for I/O-bound workloads.

Performance optimization with winloop (Windows)

For Windows users who want improved async performance, enable winloop (a Windows-compatible alternative to uvloop):

pip install silkworm-rs[winloop]
# or with uv:
uv pip install --prerelease=allow silkworm-rs[winloop]

Then call run_spider_winloop (same signature as run_spider):

from silkworm import run_spider_winloop

run_spider_winloop(
    QuotesSpider,
    concurrency=32,
)

winloop provides significant performance improvements on Windows, similar to what uvloop offers on Unix-like systems.

Running spiders with trio

If you prefer trio over asyncio, you can use run_spider_trio instead of run_spider:

pip install silkworm-rs[trio]
# or with uv:
uv pip install --prerelease=allow silkworm-rs[trio]

Then use run_spider_trio:

from silkworm import run_spider_trio

run_spider_trio(
    QuotesSpider,
    concurrency=16,
    request_timeout=10,
)

This runs your spider using trio as the async backend via trio-asyncio compatibility layer.

JavaScript rendering with Lightpanda (CDP)

For pages that require JavaScript execution, you can use Lightpanda (or any CDP-compatible browser) instead of the standard HTTP client. This uses the Chrome DevTools Protocol (CDP) to control a browser.

Installation

pip install silkworm-rs[cdp]
# or with uv:
uv pip install --prerelease=allow silkworm-rs[cdp]

Starting Lightpanda

lightpanda --remote-debugging-port=9222

Or use Chrome/Chromium:

chromium --remote-debugging-port=9222 --headless

Using CDP in your spider

There are two ways to use CDP: the convenience API or custom spider integration.

Convenience API (simple one-off fetches)

import asyncio
from silkworm import fetch_html_cdp

async def main():
    # Fetch HTML with JavaScript rendering
    text, doc = await fetch_html_cdp(
        "https://example.com",
        ws_endpoint="ws://127.0.0.1:9222",
        timeout=30.0
    )
    
    # Extract data from rendered page
    title = doc.select_first("title")
    print(title.text if title else "No title")

asyncio.run(main())

Full Spider Integration

from silkworm import HTMLResponse, Request, Response, Spider
from silkworm.cdp import CDPClient

class LightpandaSpider(Spider):
    name = "lightpanda"
    start_urls = ("https://example.com/",)

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._cdp_client = None

    async def start_requests(self):
        # Connect to CDP endpoint
        self._cdp_client = CDPClient(
            ws_endpoint="ws://127.0.0.1:9222",
            timeout=30.0
        )
        await self._cdp_client.connect()
        
        for url in self.start_urls:
            yield Request(url=url, callback=self.parse)

    async def parse(self, response: Response):
        if not isinstance(response, HTMLResponse):
            return
        
        # Extract links from JavaScript-rendered page
        for link in await response.select("a"):
            href = link.attr("href")
            if href:
                yield {"url": href}

    async def close(self):
        if self._cdp_client:
            await self._cdp_client.close()

See examples/lightpanda_simple.py and examples/lightpanda_spider.py for complete working examples.

Note: CDP support is experimental. For production use, consider using dedicated browser automation tools or the standard HTTP client when JavaScript rendering is not required.

Logging and crawl statistics

  • Structured logs via logly; set SILKWORM_LOG_LEVEL=DEBUG for verbose request/response/middleware output.
  • Periodic statistics with log_stats_interval; final stats always include elapsed time, queue size, requests/sec, seen URLs, items scraped, errors, and memory MB.

Limitations

  • By default, HTTP fetches are rnet-based without JavaScript execution; pages requiring client-side rendering can use the optional CDP integration (see "JavaScript rendering with Lightpanda" section) or external browser automation tools.
  • Request deduplication keys only on Request.url; query params, HTTP method, and body are ignored, so same-URL requests with different params/data are dropped unless you set dont_filter=True or make the URL unique yourself.
  • HTML parsing auto-detects encoding (BOM, HTTP headers/meta, charset detection fallback) but still enforces a html_max_size_bytes/doc_max_size_bytes cap (default 5 MB) in scraper-rs selectors, so very large pages may need a higher limit or preprocessing.
  • Several pipelines buffer all items in memory until close (PolarsPipeline, ExcelPipeline, YAMLPipeline, AvroPipeline, VortexPipeline, S3JsonLinesPipeline, FTPPipeline, SFTPPipeline), which can bloat RAM on long crawls; prefer streaming pipelines like JsonLines/CSV/SQLite for high-volume runs.
  • Many destination pipelines rely on optional extras; CassandraPipeline is disabled on Windows because cassandra-driver depends on libev there.

Examples

  • python examples/quotes_spider.pydata/quotes.jl
  • python examples/quotes_spider_trio.pydata/quotes_trio.jl (demonstrates trio backend)
  • python examples/quotes_spider_winloop.pydata/quotes_winloop.jl (demonstrates winloop backend for Windows)
  • python examples/hackernews_spider.py --pages 5data/hackernews.jl
  • python examples/lobsters_spider.py --pages 2data/lobsters.jl
  • python examples/url_titles_spider.py --urls-file data/url_titles.jl --output data/titles.jl (includes SkipNonHTMLMiddleware and stricter HTML size limits)
  • python examples/export_formats_demo.py --pages 2 → JSONL, XML, and CSV outputs in data/
  • python examples/taskiq_quotes_spider.py --pages 2 → demonstrates TaskiqPipeline for queue-based processing
  • python examples/sitemap_spider.py --sitemap-url https://example.com/sitemap.xml --pages 50data/sitemap_meta.jl (extracts meta tags and Open Graph data from sitemap URLs)
  • python examples/lightpanda_simple.py → demonstrates CDP/Lightpanda for JavaScript rendering (requires pip install silkworm-rs[cdp] and running Lightpanda)
  • python examples/lightpanda_spider.py → full spider example using CDP/Lightpanda

Convenience API

For one-off fetches without a full spider:

Standard HTTP fetch

import asyncio
from silkworm import fetch_html

async def main():
    text, doc = await fetch_html("https://example.com")
    print(doc.select_first("title").text)

asyncio.run(main())

CDP-based fetch (with JavaScript rendering)

import asyncio
from silkworm import fetch_html_cdp

async def main():
    # Requires Lightpanda/Chrome running with CDP enabled
    text, doc = await fetch_html_cdp("https://example.com")
    print(doc.select_first("title").text)

asyncio.run(main())

Contributing

Pull requests and issues are welcome. To set up a dev environment, install uv, create a Python 3.13 virtualenv, and sync dev dependencies:

uv venv --python python3.13
uv sync --group dev

Run the checks before opening a PR:

just fmt && just lint && just typecheck && just test

Acknowledgements

Silkworm is built on top of excellent open-source projects:

  • rnet - HTTP client with browser impersonation capabilities
  • scraper-rs - Fast HTML parsing library
  • logly - Structured logging
  • rxml - XML parsing and writing

We are grateful to the maintainers and contributors of these projects for their work.

License

MIT License. See LICENSE for details.

About

Async web scraping framework on top of Rust. Works with Free-threaded Python (`PYTHON_GIL=0`).

Topics

Resources

License

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •  

Languages