Prediction of high fidelity band structures using graph neural networks with node-level and graph-level features
The model uses the same environment as ALIGNN; otherwise, one can use conda env create -f environment.yml to install the environment. The code can be installed using pip install .
python scripts/train.py \
--root_dir="datasets/mnc_datasets" \
--sub_dir="example" \
--dataset_name="mnxc_processed_020725.pkl" \
--config_name="config_example.json"root_dir: a directory of datasets.
sub_dir: a director of the train, val, and test files in csv, and config files.
The csv files contain indices for train, val, and test, queried from the dataset.
dataset_name: a dataset name, stored in root_dir.
config_name: a config file to config the model, stored in sub_dir.
mnxc_processed_020725.pkl is provided in this repo. Installing git lfs, then using git lfs pull to download this file.
python scripts/predict.py \
--root_dir="datasets/mnc_datasets" \
--sub_dir="for_prediction" \
--dataset_name="processed_file_for_prediction.pkl" \
--prefix="prefix" \
--config_name="config_example.json"prefix: a prefix of an index file for querying data from the dataset.
The file should be named as, for example, prefix_ids.csv.
In a config file,
"output_dir": an output directory for storing output files.
"model": model config
"atom_input_features": set 0 for not using default atomic features; otherwise, the number should be according theatom_featuresset above (92 for CGCNN)."extra_atom_features": atomic features, defined as a dictionary whose keys are feature names and values are feature dimensions. Setnullif this feature is not used."global_features": graph-level features, defined similar to"extra_atom_features"."embed_global_features": embedding graph-level features using MLP.