Skip to content

archudzik/timeScalingModel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Revisiting the Relationship Between the Scale Factor a(t) and Cosmic Time t

We test the hypothesis that the expansion history of the universe can be described not by the standard ΛCDM model, but by a power-law scaling of the form a(t) ∝ t^α or even a dynamically evolving exponent α(t) modeled within a scalar–tensor framework.

Datasets Used


Key Results

Dataset Model H₀ α or Ωₘ χ² AIC BIC
CC ΛCDM 68.16 0.319 14.55 18.55 21.49
Time-Scaling 70.00 1.252 25.17 29.17 32.11
SN ΛCDM 71.42 0.351 758.58 762.58 773.46
Time-Scaling 70.89 1.388 763.42 767.42 778.30
GRB ΛCDM 75.00 0.500 167.36 171.36 177.53
Time-Scaling 75.00 1.000 174.97 178.97 185.15
CMB ΛCDM 67.19 84136.8 84138.8 84144.6
Time-Scaling 70.00 1.966 83939.5 83943.5 83955.1
Combined ΛCDM 65.00 0.357 626542.7 626550.7 626576.3
Time-Scaling 70.00 1.060 225288.4 225296.4 225321.9

ΔAIC = 401254.37 → Strong evidence in favor of Time-Scaling model in the global fit.

Scalar–Tensor Dynamics

We model α(t) as a scalar field coupled to gravity via a Brans–Dicke–like action, and test three potentials:

  • Quadratic: V(α) ∝ α²
  • Cosine: V(α) ∝ cos(α)
  • Asymmetric: V(α) ∝ α³·sin(α)

Key finding: time-directionality emerges under asymmetric potentials — Lyapunov analysis shows:

  • Forward evolution: λₗ ~ 10⁻³
  • Backward evolution: λₗ < 0

No thermodynamic or quantum mechanisms are required to induce the arrow of time.

Repository Contents

.
├── model.py              # Full numerical analysis pipeline
├── results.txt           # Full fitting + MCMC + dynamics output
├── fig_obs.png           # Fits to SN, GRB, CC, and CMB
├── fig_obs_combined.png  # Combined observational fit
├── fig_dynamics.png      # Scalar field evolution (α(t))
├── fig_lyap.png          # Lyapunov exponent analysis
├── fig_mcmc.png          # Posterior samples for ΛCDM and Time-Scaling
└── README.md             # This file

How to Run

Requirements

Having Python ≥ 3.10, install dependencies:

pip install numpy scipy matplotlib pandas sympy emcee

Run the Pipeline

python model.py

Outputs include:

  • Full observational fitting (SN, GRB, CC, CMB)
  • Global AIC/BIC comparison
  • Posterior sampling (optional MCMC)
  • Scalar dynamics and Lyapunov evolution
  • All plots saved as PNG

Citation

If using this code or results, please cite:

Chudzik, A. (2025). Revisiting the relationship between the scale factor a(t) and cosmic time t using numerical analysis. Mathematics (MDPI).

About

This project implements the pipeline for testing the time-scaling model.

Topics

Resources

Stars

Watchers

Forks

Languages