GPU worker for Reigh — processes video generation tasks using Wan2GP.
# 1. Create venv
python3 -m venv venv && source venv/bin/activate
# 2. Install dependencies
pip install -r Wan2GP/requirements.txt
pip install -r requirements.txt
# 3. Run worker
SUPABASE_SERVICE_ROLE_KEY="your-key" python worker.py \
--supabase-url "https://your-project.supabase.co" \
--worker "my-worker-001"Get credentials from reigh.art.
Use the generation engine without Reigh for local testing or custom pipelines:
# Join two video clips with AI-generated transition
python examples/join_clips_example.py \
--clip1 scene1.mp4 --clip2 scene2.mp4 \
--output transition.mp4 --prompt "smooth camera glide"
# Regenerate corrupted frames
python examples/inpaint_frames_example.py \
--video my_video.mp4 --start-frame 45 --end-frame 61 \
--output fixed.mp4 --prompt "smooth motion"from headless_model_management import HeadlessTaskQueue, GenerationTask
from pathlib import Path
queue = HeadlessTaskQueue(wan_dir=str(Path(__file__).parent / "Wan2GP"), max_workers=1)
queue.start()
task = GenerationTask(
id="my_task",
model="wan_2_2_vace_lightning_baseline_2_2_2",
prompt="a cat walking through a garden",
parameters={"video_length": 81, "resolution": "896x512", "seed": 42}
)
queue.submit_task(task)
result = queue.wait_for_completion(task.id, timeout=600)
print(f"Output: {result.get('output_path')}" if result.get("success") else f"Error: {result.get('error')}")
queue.stop()python debug.py task <task_id> # Investigate a task
python debug.py tasks --status Failed # List recent failuresSee STRUCTURE.md for detailed project layout.
Wan2GP by deepbeepmeep — the Wan2GP/ directory contains the upstream engine.