A TypeScript implementation of Recursive Language Models for processing large contexts with LLMs.
Inspired by Cloudflare's Code Mode approach.
Key differences from the Python version:
- V8 isolates instead of subprocess/TCP
- Zod schema support for typed context
- TypeScript-native
pnpm add rllm
# or
npm install rllmRLLM analyzing a node_modules directory — the LLM writes JavaScript to parse dependencies, query sub-LLMs in parallel, and synthesize a final answer:
RLM.final.mp4
Built with Gemini Flash 3. See the full interactive example in examples/node-modules-viz/.
LLM writes JavaScript code that runs in a secure V8 isolate:
import { createRLLM } from 'rllm';
const rlm = createRLLM({
model: 'gpt-4o-mini',
verbose: true,
});
// Full RLM completion - prompt first, context in options
const result = await rlm.completion(
"What are the key findings in this research?",
{ context: hugeDocument }
);
console.log(result.answer);
console.log(`Iterations: ${result.iterations}, Sub-LLM calls: ${result.usage.subCalls}`);For structured data, you can provide a Zod schema. The LLM will receive type information, enabling it to write better code:
import { z } from 'zod';
import { createRLLM } from 'rllm';
// Define schema for your data
const DataSchema = z.object({
users: z.array(z.object({
id: z.string(),
name: z.string(),
role: z.enum(['admin', 'user', 'guest']),
activity: z.array(z.object({
date: z.string(),
action: z.string(),
})),
})),
settings: z.record(z.string(), z.boolean()),
});
const rlm = createRLLM({ model: 'gpt-4o-mini' });
const result = await rlm.completion(
"How many admin users are there? What actions did they perform?",
{
context: myData,
contextSchema: DataSchema, // LLM sees the type structure!
}
);The LLM will know it can access context.users, context.settings, etc. with full type awareness.
The LLM will write code like:
// LLM-generated code runs in V8 isolate
const chunks = [];
for (let i = 0; i < context.length; i += 50000) {
chunks.push(context.slice(i, i + 50000));
}
const findings = await llm_query_batched(
chunks.map(c => `Extract key findings from:\n${c}`)
);
const summary = await llm_query(`Combine findings:\n${findings.join('\n')}`);
print(summary);
giveFinalAnswer({ message: summary });Create an RLLM instance with sensible defaults.
const rlm = createRLLM({
model: 'gpt-4o-mini', // Model name
provider: 'openai', // 'openai' | 'anthropic' | 'gemini' | 'openrouter' | 'custom'
apiKey: process.env.KEY, // Optional, uses env vars by default
baseUrl: undefined, // Optional, required for 'custom' provider
verbose: true, // Enable logging
});Use the custom provider to connect to any OpenAI-compatible API (e.g., vLLM, Ollama, LM Studio, Azure OpenAI):
const rlm = createRLLM({
provider: 'custom',
model: 'llama-3.1-8b',
baseUrl: 'http://localhost:8000/v1', // Required for custom provider
apiKey: 'your-api-key', // Optional, depends on your API
verbose: true,
});Note: When using provider: 'custom', the baseUrl parameter is required. An error will be thrown if it's not provided.
| Method | Description |
|---|---|
rlm.completion(prompt, options) |
Full RLM completion with code execution |
rlm.chat(messages) |
Direct LLM chat |
rlm.getClient() |
Get underlying LLM client |
| Option | Type | Description |
|---|---|---|
context |
string | T |
The context data available to LLM-generated code |
contextSchema |
ZodType<T> |
Optional Zod schema describing context structure |
The V8 isolate provides these bindings to LLM-generated code:
| Binding | Description |
|---|---|
context |
The loaded context data |
llm_query(prompt, model?) |
Query sub-LLM |
llm_query_batched(prompts, model?) |
Batch query sub-LLMs |
giveFinalAnswer({ message, data? }) |
Return final answer |
print(...) |
Console output |
Subscribe to execution events for visualizations, debugging, or streaming UIs:
const result = await rlm.completion("Analyze this data", {
context: myData,
onEvent: (event) => {
switch (event.type) {
case "iteration_start":
console.log(`Starting iteration ${event.iteration}`);
break;
case "llm_query_start":
console.log("LLM thinking...");
break;
case "code_execution_start":
console.log(`Executing:\n${event.code}`);
break;
case "final_answer":
console.log(`Answer: ${event.answer}`);
break;
}
}
});| Event Type | Description |
|---|---|
iteration_start |
New iteration beginning |
llm_query_start |
Main LLM query starting |
llm_query_end |
Main LLM response received |
code_execution_start |
V8 isolate executing code |
code_execution_end |
Code execution finished |
final_answer |
giveFinalAnswer() called with answer |
┌─────────────────────────────────────────────────────────────┐
│ RLLM TypeScript │
│ │
│ ┌─────────────┐ ┌──────────────────────────────────┐ │
│ │ RLLM │ │ V8 Isolate (Sandbox) │ │
│ │ Class │───▶│ │ │
│ └─────────────┘ │ • context (injected data) │ │
│ │ │ • llm_query() ──┐ │ │
│ │ │ • llm_query_batched() │ │
│ ▼ │ • print() / console │ │
│ ┌─────────────┐ │ • giveFinalAnswer() │ │
│ │ LLMClient │◀───┼──────────────────┘ │ │
│ │ (OpenAI) │ │ │ │
│ └─────────────┘ │ LLM-generated JS code runs here │ │
│ └──────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
No TCP. No subprocess. Direct function calls via bindings.
The Python RLLM uses subprocess + TCP sockets for code execution. We use V8 isolates instead:
Python RLLM: LLM → Python exec() → subprocess → TCP socket → LMHandler
TypeScript: LLM → V8 isolate (same process) → direct function calls
Benefits:
- No TCP/network - Direct function calls via bindings
- Fast startup - Isolates spin up in milliseconds
- Secure - V8's built-in memory isolation
- Simple - No containers, no socket servers
# Install dependencies
pnpm install
# Build
pnpm build
# Run example
pnpm example
# Run tests
pnpm testMIT - Same as the original Python RLLM.
Based on the Recursive Language Models paper and Python implementation by Alex Zhang et al.
Reference: RLM Blogpost