Skip to content

groupthinking/intelligentOne

Repository files navigation

🧠 intelligentOne

The world's first self-evolving autonomous intelligence platform

MCP Native Python License

While others build static workflows, intelligentOne evolves them autonomously.

πŸš€ The Billion-Dollar Opportunity

intelligentOne represents a fundamental paradigm shift in how AI systems operate. This isn't another automation toolβ€”it's the first platform that writes, tests, and deploys its own capabilities autonomously.

The Paradigm Shift

Traditional Systems intelligentOne
Static, hardcoded workflows Self-evolving, autonomous workflows
Manual tool integration Dynamic MCP-native tool discovery
Human-designed pipelines LLM-generated & LLM-judged recipes
One-size-fits-all solutions Context-adaptive intelligence
Siloed capabilities Composable atomic tools
Degrades over time Improves continuously

πŸ—οΈ Architecture Overview

intelligentOne operates through three revolutionary layers:

1. Hypothesis Engine πŸ§ͺ

The creative core that generates workflow ideas using LLM reasoning:

  • Analyzes objectives and context
  • Generates multiple workflow hypotheses
  • Combines atomic tools in novel ways
  • Learns from successful patterns

2. Simulation Lab πŸ”¬

The quality gate that validates workflows before deployment:

  • Executes hypotheses in isolation
  • LLM-as-Judge scoring (Completeness 30%, Relevance 40%, Actionability 30%)
  • Automatic deployment threshold: 85+ score
  • Zero risk to production systems

3. Blueprint Vault πŸ’Ύ

The memory that stores and evolves successful recipes:

  • Persistent JSON storage of proven workflows
  • Hot-reload capability for dynamic composition
  • Success metrics and performance tracking
  • Continuous improvement through execution feedback
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    User Query/Objective                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚   Router Agent       β”‚  Intent Classification
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚  Blueprint Vault     β”‚  Check for existing
         β”‚   (Search)           β”‚  workflow match
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
              Found? β”‚ Not Found
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚   Execute Blueprint  β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚ Not Found
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚  Hypothesis Engine       β”‚  Generate new
         β”‚  (LLM generates ideas)   β”‚  workflow ideas
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚   Simulation Lab         β”‚  Test & Judge
         β”‚   (LLM-as-Judge)         β”‚  Score: 0-100
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                     β”‚
              Score >= 85?
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         β”‚   Blueprint Vault        β”‚  Auto-deploy
         β”‚   (Store & Deploy)       β”‚  successful recipes
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

⚑ Quick Start

Installation

# Clone the repository
git clone https://github.com/groupthinking/intelligentOne.git
cd intelligentOne

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Configure environment
cp .env.example .env
# Edit .env and add your API keys (OpenAI or Anthropic)

Running with Claude Desktop

Add to your Claude Desktop MCP configuration:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "intelligentone": {
      "command": "python",
      "args": ["/absolute/path/to/intelligentOne/intelligentone_server.py"],
      "env": {
        "OPENAI_API_KEY": "your-key-here",
        "ANTHROPIC_API_KEY": "your-key-here"
      }
    }
  }
}

Restart Claude Desktop and you'll see intelligentOne tools available.

First Workflow Test

# In Claude Desktop, try:
"Monitor TechCrunch RSS for AI chip announcements and alert me about urgent ones"

# intelligentOne will:
# 1. Classify the intent (actionable)
# 2. Check for existing blueprints
# 3. Generate a new workflow hypothesis if needed
# 4. Test it in Simulation Lab
# 5. Auto-deploy if score >= 85
# 6. Execute the workflow

🎯 Use Cases

1. Competitive Intelligence Automation

Query: "Monitor competitor product launches and calculate competitive delta"

intelligentOne creates:
- RSS monitoring workflow
- OGP metadata extraction
- Competitive analysis scoring
- Urgent alert system

2. Market Research Pipeline

Query: "Track AI chip industry news and identify breakthrough capabilities"

intelligentOne builds:
- Multi-source RSS aggregation
- Keyword-based filtering
- Capability extraction from articles
- Trend analysis and alerts

3. Autonomous Research Assistant

Query: "Find and summarize latest developments in quantum computing"

intelligentOne evolves:
- Information gathering workflow
- Content extraction and analysis
- Summary generation
- Knowledge base updates

πŸ› οΈ Technology Stack

Component Technology Purpose
MCP Server FastMCP Native tool protocol integration
Hypothesis Engine GPT-4o / Claude 3.5 Workflow generation
Simulation Lab LLM-as-Judge Quality assurance
Blueprint Vault JSON Storage Recipe persistence
Web Scraping httpx + BeautifulSoup Content extraction
Feed Monitoring feedparser RSS/Atom parsing
Data Validation Pydantic Type safety

πŸ“Š Atomic Tools

intelligentOne provides five core atomic tools that combine into infinite possibilities:

Tool Purpose Example
listen_to_rss() Monitor RSS feeds Track TechCrunch AI news
extract_ogp_capabilities() Extract metadata Get article details
search_internal_db() Query knowledge base Find existing workflows
calculate_competitive_delta() Analyze gaps Compare capabilities
send_alert() Notify users Urgent updates

πŸ—ΊοΈ Roadmap

Phase 1: Foundation βœ… (Complete)

  • βœ… MCP-native architecture
  • βœ… Atomic tools implementation
  • βœ… Hypothesis Engine with LLM generation
  • βœ… Simulation Lab with LLM-as-Judge
  • βœ… Blueprint Vault persistence
  • βœ… Dynamic composite tool loading

Phase 2: Intelligence Enhancement (Q1 2025)

  • πŸ”„ Multi-model ensemble judgment
  • πŸ”„ A/B testing of workflow variants
  • πŸ”„ Automatic hyperparameter tuning
  • πŸ”„ Cross-blueprint learning
  • πŸ”„ Failure analysis and self-healing

Phase 3: Enterprise Scale (Q2 2025)

  • πŸ“‹ Multi-user Blueprint Vaults
  • πŸ“‹ Distributed execution engine
  • πŸ“‹ Advanced security sandboxing
  • πŸ“‹ Real-time collaboration
  • πŸ“‹ Enterprise integrations (Slack, Teams, Email)

πŸ“š Documentation

πŸ”’ Security

  • All workflow hypotheses execute in simulation sandbox before deployment
  • Blueprint Vault uses JSON file storage (no SQL injection risk)
  • MCP protocol provides built-in authentication
  • LLM API keys stored in environment variables (never committed)
  • Optional approval threshold configuration

🀝 Contributing

We welcome contributions! intelligentOne is about expanding the universe of autonomous intelligence capabilities.

πŸ“œ License

MIT License - See LICENSE file for details.

🌟 Vision

intelligentOne represents the future of AI systems:

Before: Humans design workflows, AI executes them
After: AI designs, tests, and deploys workflows autonomously

This is not incremental improvementβ€”it's a fundamental shift in how intelligent systems evolve. While traditional systems degrade over time requiring manual updates, intelligentOne gets smarter with every query, building an ever-expanding library of proven capabilities.

The platform that owns this self-evolution loop will dominate the next decade of AI automation.

Welcome to autonomous intelligence.


Built with ❀️ by the intelligentOne team | GitHub | Issues

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •