Skip to content

Technical tutorials that teach how complex systems actually work through production code examples

Notifications You must be signed in to change notification settings

johnxie/awesome-code-docs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

   ___                                         ______          __        ____
  / _ |_    _____ ___  ___  __ _  ___          / ____/___  ____/ /__     / __ \____  __________
 / __ | |/|/ / -_|_-< / _ \/  ' \/ -_)        / /   / __ \/ __  / _ \   / / / / __ \/ ___/ ___/
/_/ |_|__,__/\__/___/ \___/_/_/_/\__/        / /___/ /_/ / /_/ /  __/  / /_/ / /_/ / /__(__  )
                                              \____/\____/\__,_/\___/  /_____/\____/\___/____/

Deep-dive tutorials for the world's most popular open-source projects

Learn how complex systems actually work — not just what they do

Awesome GitHub stars Tutorials Content Hours Last Updated

Browse Tutorials · Learning Paths · Contributing · Community


Why This Exists

Most documentation tells you what to do. These tutorials explain how and why complex systems work under the hood — with architecture diagrams, real code walkthroughs, and production-grade patterns.

┌──────────────────────────────────────────────────────────────┐
│                                                              │
│    📖 Typical Docs          vs.     🔬 Awesome Code Docs    │
│    ─────────────                    ─────────────────────    │
│    "Run this command"               "Here's the pipeline     │
│    "Use this API"                    architecture that makes │
│    "Set this config"                 this work, the design   │
│                                      tradeoffs, and how to   │
│                                      extend it yourself"     │
│                                                              │
└──────────────────────────────────────────────────────────────┘

Every tutorial follows a consistent 8-chapter structure:

Chapter Focus
1. Getting Started Installation, first run, project structure
2. Architecture System design, data flow, core abstractions
3-5. Core Systems Deep dives into the 3 most important subsystems
6. Extensibility Plugins, custom components, APIs
7. Advanced Performance, customization, internals
8. Production Deployment, monitoring, scaling, security

Each chapter includes Mermaid architecture diagrams, annotated code examples from the real codebase, and summary tables for quick reference.


📚 Tutorial Catalog

 ╔════════════════════════════════════════════════════════════╗
 ║  🤖  AI & AGENTS  │  🔧  DEV TOOLS  │  🗄️  DATA  │  🎤 SPEECH  ║
 ║   57+ tutorials    │   18 tutorials  │  14 tutorials │  3 tutorials  ║
 ╚════════════════════════════════════════════════════════════╝

🤖 AI Agents & Multi-Agent Systems

Build autonomous AI systems that reason, plan, and collaborate.

Tutorial Stars Stack What You'll Learn
LangChain 100K+ Python Chains, agents, RAG, prompt engineering
LangGraph 8K+ Python Stateful multi-actor graphs, cycles, persistence
CrewAI 24K+ Python Role-based agent teams, task delegation
AutoGen / AG2 40K+ Python Multi-agent conversations, code execution
OpenAI Swarm 18K+ Python Lightweight agent handoffs, routines
Smolagents 14K+ Python Hugging Face code agents, tool calling
Phidata 17K+ Python Autonomous agents with memory and tools
Pydantic AI 5K+ Python Type-safe agent development
AgentGPT 32K+ Python Autonomous task planning and execution
SuperAGI 16K+ Python Production autonomous agent framework
ElizaOS 17K+ TypeScript Multi-agent AI with character system
OpenClaw 119K+ TypeScript Personal AI assistant, multi-channel
Deer Flow - Python Research agent workflows
Letta 14K+ Python Stateful agents with long-term memory
Anthropic Skills 59K+ Python/TypeScript Reusable AI agent capabilities, MCP integration

🧠 LLM Frameworks & RAG

Retrieval-augmented generation, model serving, and LLM tooling.

Tutorial Stars Stack What You'll Learn
LlamaIndex 38K+ Python Data connectors, indexing, query engines
Haystack 18K+ Python Pipeline-based search and RAG
DSPy 20K+ Python Declarative LLM programming, optimizers
Instructor 10K+ Python Structured output extraction with Pydantic
Outlines 10K+ Python Constrained LLM generation
Chroma 16K+ Python AI-native embedding database
LanceDB 5K+ Python/Rust Serverless vector database
RAGFlow 30K+ Python Document-aware RAG engine
Quivr 37K+ Python Second brain with RAG
Mem0 24K+ Python Intelligent memory layer for AI
Semantic Kernel 23K+ C#/Python Microsoft's AI orchestration SDK
Fabric 26K+ Go/Python AI prompt pattern framework

🖥️ LLM Infrastructure & Serving

Run, serve, and manage LLMs in production.

Tutorial Stars Stack What You'll Learn
Ollama 110K+ Go Local LLM serving, model management
llama.cpp 73K+ C++ High-performance local inference
vLLM 38K+ Python PagedAttention, continuous batching
LiteLLM 15K+ Python Unified API gateway for 100+ LLMs
LocalAI 27K+ Go Self-hosted multi-modal AI
Open WebUI 60K+ Python/Svelte Self-hosted ChatGPT alternative
LLaMA-Factory 40K+ Python Unified LLM fine-tuning framework
BentoML 7K+ Python ML model serving and deployment
Langfuse 8K+ TypeScript LLM observability and tracing

💬 Chat & AI Applications

Full-stack AI chat platforms and copilots.

Tutorial Stars Stack What You'll Learn
LobeChat 71K+ Next.js Modern AI chat, plugins, theming
Dify 60K+ Python/React Visual LLM app builder
Flowise 35K+ Node.js/React Visual LLM workflow orchestration
CopilotKit 15K+ React/TypeScript In-app AI copilots
Chatbox 24K+ JavaScript/React Multi-provider chat client
Vercel AI SDK 12K+ TypeScript AI-powered React/Next.js apps
Perplexica 19K+ TypeScript AI-powered search engine
SillyTavern 9K+ Node.js Advanced roleplay chat platform
Khoj 18K+ Python/Django Self-hosted AI personal assistant
Botpress 13K+ Node.js Enterprise chatbot platform
AnythingLLM 30K+ Node.js All-in-one AI desktop app
GPT-OSS - TypeScript Open-source GPT implementation
Claude Quickstarts 13.7K+ Python/TypeScript Production Claude integration patterns

🔧 Developer Tools & Productivity

AI coding assistants, build systems, and dev infrastructure.

Tutorial Stars Stack What You'll Learn
Continue 22K+ TypeScript Open-source AI coding assistant
OpenHands 45K+ Python AI software engineering agent
Aider 25K+ Python AI pair programming in terminal
Claude Code - TypeScript Anthropic's AI coding CLI
Claude Task Master - TypeScript AI-powered task management
CopilotKit 15K+ React In-app AI assistants
Nanocoder - TypeScript AI coding agent internals
Turborepo 27K+ Rust High-performance monorepo builds
n8n AI 52K+ Node.js Visual AI workflow automation
Taskade - AI/Productivity AI-powered project management
Browser Use 10K+ Python AI-powered browser automation
ComfyUI 65K+ Python Node-based AI art workflows
MCP Python SDK 21.4K+ Python Building MCP servers and tool integrations
MCP Servers 77.6K+ Multi-lang Reference MCP server implementations
OpenAI Python SDK 29.8K+ Python GPT API, embeddings, assistants, batch processing
tiktoken 17.1K+ Python/Rust Token counting, encoding, cost optimization

🗄️ Databases, Knowledge & Analytics

Data platforms, knowledge management, and observability.

Tutorial Stars Stack What You'll Learn
Supabase 75K+ PostgreSQL/TypeScript Realtime DB, auth, edge functions
PostHog 23K+ Python/TypeScript Product analytics, feature flags
NocoDB 50K+ Node.js/Vue Open-source Airtable alternative
Teable 15K+ TypeScript/PostgreSQL Multi-dimensional data platform
SiYuan 25K+ Go/TypeScript Privacy-first knowledge management
Logseq 34K+ ClojureScript Local-first knowledge graph
OpenBB 35K+ Python Open-source financial terminal
Athens Research - ClojureScript Graph-based knowledge system
Obsidian Outliner - TypeScript Obsidian plugin architecture
ClickHouse 39K+ C++ Column-oriented analytics DB
PostgreSQL Planner - C Query planning internals
MeiliSearch 48K+ Rust Lightning-fast search engine
PhotoPrism 36K+ Go AI-powered photo management
Liveblocks 4K+ TypeScript Real-time collaboration infra

⚙️ Systems & Infrastructure

Low-level systems, cloud native, and infrastructure patterns.

Tutorial Stars Stack What You'll Learn
Kubernetes Operators - Go Production-grade K8s operator patterns
React Fiber - JavaScript React reconciler internals
Dyad - TypeScript Local AI app development
LangChain Architecture - Python LangChain deep architecture guide
n8n MCP - TypeScript Model Context Protocol with n8n
Firecrawl 22K+ Python LLM-ready web data extraction

🎤 Speech & Multimodal AI

Voice recognition, audio processing, and multimodal AI applications.

Tutorial Stars Stack What You'll Learn
OpenAI Whisper 93.9K+ Python Speech-to-text, translation, multilingual ASR
Whisper.cpp 37K+ C++ Speech recognition on edge devices
OpenAI Realtime Agents 6.7K+ TypeScript Voice-first AI agents with WebRTC

🗺️ Learning Paths

 ┌─────────────────────────────────────────────────────────────┐
 │                    CHOOSE YOUR PATH                         │
 │                                                             │
 │  🟢 Beginner    Start here if you're new to AI/ML          │
 │  🟡 Builder     Ready to build production applications      │
 │  🔴 Architect   Designing systems at scale                  │
 └─────────────────────────────────────────────────────────────┘

🟢 Path 1: AI Fundamentals

"I want to understand how AI applications work"

Ollama ──→ LangChain ──→ Chroma ──→ Open WebUI
 (run       (build        (store      (deploy a
  LLMs       chains)       vectors)    full app)
  locally)

🟡 Path 2: Agent Builder

"I want to build autonomous AI agents"

LangChain ──→ LangGraph ──→ CrewAI ──→ AutoGen/AG2 ──→ Langfuse
 (basics)      (stateful     (teams)    (multi-agent    (monitor
                graphs)                  orchestration)  in prod)

🟡 Path 3: RAG Engineer

"I want to build retrieval-augmented generation systems"

LlamaIndex ──→ Haystack ──→ DSPy ──→ RAGFlow ──→ vLLM
 (indexing &    (pipeline    (optimize  (document   (serve at
  retrieval)     search)      prompts)   processing)  scale)

🟡 Path 4: Full-Stack AI

"I want to build AI-powered web applications"

Vercel AI ──→ CopilotKit ──→ LobeChat ──→ Supabase ──→ n8n
 (AI SDK       (in-app        (full chat   (database    (workflow
  basics)       copilots)       platform)    + auth)      automation)

🔴 Path 5: LLM Infrastructure

"I want to run and scale LLMs in production"

llama.cpp ──→ vLLM ──→ LiteLLM ──→ BentoML ──→ K8s Operators
 (local         (GPU     (unified    (model      (orchestrate
  inference)     serving)  gateway)    packaging)   at scale)

🔴 Path 6: AI Coding Tools

"I want to understand how AI coding assistants work"

Continue ──→ Aider ──→ OpenHands ──→ Browser Use ──→ Claude Code
 (code         (pair     (AI SWE      (browser        (CLI
  completion)   prog)     agent)       automation)      agent)

🟡 Path 7: MCP Mastery

"I want to build AI tool servers and extend Claude with custom capabilities"

MCP Python SDK ──→ MCP Servers ──→ Anthropic Skills ──→ n8n MCP ──→ Claude Code
 (build             (reference        (reusable            (production   (use MCP
  servers)           implementations)  capabilities)        patterns)      tools)

Duration: 40-50 hours | Difficulty: Intermediate to Advanced

🟢 Path 8: Speech & Voice AI

"I want to build voice-first AI applications"

OpenAI Whisper ──→ Whisper.cpp ──→ OpenAI Realtime Agents ──→ Voice Apps
 (Python ASR,       (edge            (voice-first             (production
  fine-tuning)       deployment)       conversations)           voice apps)

Duration: 25-35 hours | Difficulty: Intermediate

🟡 Path 9: OpenAI Ecosystem

"I want to master OpenAI's tools and APIs"

OpenAI Python SDK ──→ tiktoken ──→ OpenAI Whisper ──→ Realtime Agents
 (core API,          (token         (speech              (voice
  embeddings,         optimization)  recognition)         agents)
  assistants)

Duration: 35-45 hours | Difficulty: Beginner to Intermediate


📊 Collection Stats

╔══════════════════════════════════════════════════════════╗
║                  COLLECTION OVERVIEW                     ║
╠══════════════════════════════════════════════════════════╣
║  📦 Total Tutorials        91                            ║
║  📝 Total Chapters         760+                          ║
║  📏 Lines of Content       520,000+                      ║
║  ⏱️  Estimated Hours        1,100+                        ║
║  🏗️  Architecture Diagrams  550+                          ║
║  💻 Code Examples           2,400+                        ║
╚══════════════════════════════════════════════════════════╝
Category Tutorials Status
🤖 AI Agents & Multi-Agent 15 Complete
🧠 LLM Frameworks & RAG 12 Complete
🖥️ LLM Infrastructure 9 Complete
💬 Chat & AI Apps 13 Complete
🔧 Developer Tools 17 Complete
🗄️ Data & Analytics 14 Complete
⚙️ Systems & Infra 6 Complete
🎤 Speech & Multimodal AI 3 Complete

🛠️ How Tutorials Are Built

Each tutorial is generated using AI-powered codebase analysis, then reviewed and enhanced for accuracy. The process:

┌──────────┐    ┌──────────────┐    ┌──────────────┐    ┌──────────┐
│  Crawl   │───→│   Identify   │───→│   Generate   │───→│  Review  │
│  Repo    │    │  Abstractions│    │   Chapters   │    │ & Polish │
└──────────┘    └──────────────┘    └──────────────┘    └──────────┘
   Clone &         Find core          Write 8-ch          Verify code
   index files     classes &          tutorials w/         examples &
                   patterns           diagrams             architecture

Inspired by Tutorial-Codebase-Knowledge by The Pocket.

Built & Maintained With

Tool Purpose
Taskade Project planning, AI-powered content generation
Claude Code Codebase analysis and tutorial writing
GitHub Pages Tutorial hosting with Jekyll

🤝 Contributing

We welcome contributions! Here's how you can help:

┌─────────────────────────────────────────────────┐
│              WAYS TO CONTRIBUTE                  │
├─────────────────────────────────────────────────┤
│  ⭐  Star the repo to show support              │
│  📝  Suggest a new tutorial via Issues           │
│  🔧  Fix errors or improve existing tutorials    │
│  📖  Write a new tutorial for a project          │
│  💬  Share feedback in Discussions                │
└─────────────────────────────────────────────────┘

What Makes a Great Tutorial?

  • Goes deep — explains how and why, not just what
  • Real code — examples from the actual codebase, not toy demos
  • Visual — architecture diagrams, flow charts, sequence diagrams
  • Progressive — builds complexity gradually across chapters
  • Production-focused — covers deployment, monitoring, scaling

Open an Issue to suggest a new tutorial or report a problem.


🌍 Community

Star this repo Get updates on new tutorials
💬 Discussions Ask questions, share insights
🐦 Twitter @johnxie Latest updates and highlights

┌──────────────────────────────────────────────────┐
│                                                  │
│   "The best way to learn a codebase is to        │
│    understand the architecture decisions          │
│    that shaped it."                               │
│                                                  │
└──────────────────────────────────────────────────┘

Browse Tutorials · Pick a Learning Path · Star on GitHub

About

Technical tutorials that teach how complex systems actually work through production code examples

Topics

Resources

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •