Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/pytorch_tabular/ssl_models/common/noise_generators.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ class SwapNoiseCorrupter(nn.Module):

def __init__(self, probas):
super().__init__()
self.probas = torch.from_numpy(np.array(probas))
self.probas = torch.from_numpy(np.array(probas, dtype=np.float32))

def forward(self, x):
should_swap = torch.bernoulli(self.probas.to(x.device) * torch.ones(x.shape).to(x.device))
Expand Down
12 changes: 5 additions & 7 deletions src/pytorch_tabular/tabular_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ def __init__(
if isinstance(target, str):
self.y = self.y.reshape(-1, 1) # .astype(np.int64)
else:
self.y = np.zeros((self.n, 1)) # .astype(np.int64)
self.y = np.zeros((self.n, 1), dtype=np.float32) # .astype(np.int64)

if task == "classification":
self.y = self.y.astype(np.int64)
Expand Down Expand Up @@ -502,7 +502,7 @@ def _cache_dataset(self):

def split_train_val(self, train):
logger.debug(
"No validation data provided." f" Using {self.config.validation_split*100}% of train data as validation"
f"No validation data provided. Using {self.config.validation_split * 100}% of train data as validation"
)
val_idx = train.sample(
int(self.config.validation_split * len(train)),
Expand Down Expand Up @@ -753,9 +753,7 @@ def _load_dataset_from_cache(self, tag: str = "train"):
try:
dataset = getattr(self, f"_{tag}_dataset")
except AttributeError:
raise AttributeError(
f"{tag}_dataset not found in memory. Please provide the data for" f" {tag} dataloader"
)
raise AttributeError(f"{tag}_dataset not found in memory. Please provide the data for {tag} dataloader")
elif self.cache_mode is self.CACHE_MODES.DISK:
try:
# get the torch version
Expand All @@ -768,10 +766,10 @@ def _load_dataset_from_cache(self, tag: str = "train"):
dataset = torch.load(self.cache_dir / f"{tag}_dataset", weights_only=False)
except FileNotFoundError:
raise FileNotFoundError(
f"{tag}_dataset not found in {self.cache_dir}. Please provide the" f" data for {tag} dataloader"
f"{tag}_dataset not found in {self.cache_dir}. Please provide the data for {tag} dataloader"
)
elif self.cache_mode is self.CACHE_MODES.INFERENCE:
raise RuntimeError("Cannot load dataset in inference mode. Use" " `prepare_inference_dataloader` instead")
raise RuntimeError("Cannot load dataset in inference mode. Use `prepare_inference_dataloader` instead")
else:
raise ValueError(f"{self.cache_mode} is not a valid cache mode")
return dataset
Expand Down
Loading