Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 130 additions & 0 deletions exercicios/exercicio_casa_sueide.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('vendas_ficticias.csv')\n",
"dados_df = pd.DataFrame(df)\n",
"dados_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calcular a média. \n",
"# Cálculo usando a função mean.\n",
"media_vendas = vendas.mean()\n",
"media\n",
"print(f\"Média das vendas: {media_vendas:.2f}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calcular a mediana. \n",
"# Cálculo usando a função median\n",
"mediana_vendas = vendas.median()\n",
"print(f\"Mediana das vendas: {mediana_vendas:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calcular o mínimo. \n",
"# Cálculo usando a função min\n",
"minimo_vendas = vendas.min()\n",
"print(f\"Mínimo das vendas: {minimo_vendas:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calcular o máximo.\n",
"# Cálculo usando a função max\n",
"maximo_vendas = vendas.max()\n",
"print(f\"Máximo das vendas: {maximo_vendas:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calcular o desvio padrão dos valores das vendas. \n",
"# Foi calculado o desvio padrão\n",
"desvio_padrão_vendas = varianca_vendas ** 0.5\n",
"print(f\"Desvio padrão das vendas: {desvio_padrao_vendas:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calcular a quantidade vendida\n",
"# Foi calculado a quantidade vendida\n",
"total_vendido = quantidade_vendida.sum()\n",
"print(f\"Quantidade de produtos vendidos: {total_vendido}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Qual produto que mais vendeu?\n",
"# Foi utilizado a moda para identificar, o cálculo foi usando a função mode \n",
"produto_mais_vendido = produtos.mode()[0]\n",
"print(f\"Produto mais vendido: {produto_mais_vendido}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
55 changes: 55 additions & 0 deletions exercicios/para-casa/leitura_csv.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'panda'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpanda\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'panda'"
]
}
],
"source": [
"import panda as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install pandas"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}