Skip to content

tbtech-section4/dsit-docker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSIT Docker

Provides a Notebook environment for DSIT on Docker (include CUDA environment)
Some google colab specific features cannot be used.

Based Docker image

Added Modules

Python Modules

  • pandas
  • seaborn
  • scikit-learn
  • graphviz
  • xgboost
  • lightgbm
  • imblearn
  • pydot
  • opencv-python
  • tqdm
  • imageio
  • scikit-image
  • statsmodels
  • jupyterlab
  • jupyterlab-language-pack-ja-JP

Jupyter Extensions

  • @lckr/jupyterlab_variableinspector
  • @jupyterlab/git

How to use

  1. Set the version of TensorFlow you want to use to $TF_PACKAGE_VERSION
    If $TF_PACKAGE_VERSION is blank, it will be 'latest'.
    ex.)
    2.20.0 (<- TensorFlow 2.20.0)
    2.20.0-gpu (<- TensorFlow 2.20.0 and CUDA)
    latest (<- latest version (default))
    latest-gpu(<- latest version and CUDA)

  2. Build image and run container, then jupyter lab server will start.

  3. Access the following URL with a web browser.
    http://localhost:8888/lab?token=dsit

Build image example

# set package version
export TF_PACKAGE_VERSION="2.20.0-gpu"
# build image
docker build -t ghcr.io/tbtech-section4/dsit:${TF_PACKAGE_VERSION} --build-arg TF_PACKAGE_VERSION=${TF_PACKAGE_VERSION} ./

# run container
docker run --rm -it --gpus all -p 8888:8888 -v ${PWD}/Notebook:/tf/Notebook -t ghcr.io/tbtech-section4/dsit:${TF_PACKAGE_VERSION}

About

No description or website provided.

Topics

Resources

License

Stars

Watchers

Forks

Packages