Provides a Notebook environment for DSIT on Docker (include CUDA environment)
Some google colab specific features cannot be used.
- TensorFlow Jupyter
https://hub.docker.com/r/tensorflow/tensorflow/tags?page=1&name=jupyter
- pandas
- seaborn
- scikit-learn
- graphviz
- xgboost
- lightgbm
- imblearn
- pydot
- opencv-python
- tqdm
- imageio
- scikit-image
- statsmodels
- jupyterlab
- jupyterlab-language-pack-ja-JP
- @lckr/jupyterlab_variableinspector
- @jupyterlab/git
-
Set the version of TensorFlow you want to use to
$TF_PACKAGE_VERSION
If$TF_PACKAGE_VERSIONis blank, it will be 'latest'.
ex.)
2.20.0(<- TensorFlow 2.20.0)
2.20.0-gpu(<- TensorFlow 2.20.0 and CUDA)
latest(<- latest version (default))
latest-gpu(<- latest version and CUDA) -
Build image and run container, then jupyter lab server will start.
-
Access the following URL with a web browser.
http://localhost:8888/lab?token=dsit
# set package version
export TF_PACKAGE_VERSION="2.20.0-gpu"
# build image
docker build -t ghcr.io/tbtech-section4/dsit:${TF_PACKAGE_VERSION} --build-arg TF_PACKAGE_VERSION=${TF_PACKAGE_VERSION} ./
# run container
docker run --rm -it --gpus all -p 8888:8888 -v ${PWD}/Notebook:/tf/Notebook -t ghcr.io/tbtech-section4/dsit:${TF_PACKAGE_VERSION}